Abstract

An increase in failure of geotechnical structures is a significant concern in seismic-prone areas. The purpose of the study is to propose a closed-form solution for the seismic active pressure acting on a retaining wall with backfill subjected to uniform surcharge considering the propagation of both shear and primary waves. The proposed study considers the damping ratio by assuming soil as Kelvin-Voigt material. The proposed methodology satisfies boundary conditions at the surface of the backfill due to surcharge. The deduced acceleration profile is considered for the estimation of inertial forces due to critical wedge and surcharge. The study reveals that the maximum seismic active pressure coefficient occurs when the normalized input frequency is equal to π/2. It is observed that the surcharge magnitude does not affect both horizontal and vertical acceleration profiles. The parametric study presents the influence of various static and dynamic properties of the backfill soil on the distribution of seismic pressure acting on the wall. The coefficient of earth pressure obtained from the proposed method is in good agreement with the existing pseudo-static methods. It is concluded that the effect of shear wave propagation on earth pressure is relatively dominant as compared to that of primary wave propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call