Abstract

We show how modified profile likelihood methods, developed in the statistical literature, may be effectively applied to estimate the structural parameters of econometric models for panel data, with a remarkable reduction of bias with respect to ordinary likelihood methods. Initially, the implementation of these methods is illustrated for general models for panel data including individual-specific fixed effects and then, in more detail, for the truncated linear regression model and dynamic regression models for binary data formulated along with different specifications. Simulation studies show the good behavior of the inference based on the modified profile likelihood, even when compared to an ideal, although infeasible, procedure (in which the fixed effects are known) and also to alternative estimators existing in the econometric literature. The proposed estimation methods are implemented in an R package that we make available to the reader.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.