Abstract
Binary regression models for spatial data are commonly used in disciplines such as epidemiology and ecology. Many spatially referenced binary data sets suffer from location error, which occurs when the recorded location of an observation differs from its true location. When location error occurs, values of the covariates associated with the true spatial locations of the observations cannot be obtained. We show how a change of support (COS) can be applied to regression models for binary data to provide coefficient estimates when the true values of the covariates are unavailable, but the unknown location of the observations are contained within nonoverlapping arbitrarily shaped polygons. The COS accommodates spatial and nonspatial covariates and preserves the convenient interpretation of methods such as logistic and probit regression. Using a simulation experiment, we compare binary regression models with a COS to naive approaches that ignore location error. We illustrate the flexibility of the COS by modeling individual-level disease risk in a population using a binary data set where the locations of the observations are unknown but contained within administrative units. Our simulation experiment and data illustration corroborate that conventional regression models for binary data that ignore location error are unreliable, but that the COS can be used to eliminate bias while preserving model choice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.