Abstract

In recent decades, primal-dual neural networks, as a special type of recurrent neural networks, have received great success in real-time manipulator control. However, noises are usually ignored when neural controllers are designed based on them, and thus, they may fail to perform well in the presence of intensive noises. Harmonic noises widely exist in real applications and can severely affect the control accuracy. This work proposes a novel primal-dual neural network design that directly takes noise control into account. By taking advantage of the fact that the unknown amplitude and phase information of a harmonic signal can be eliminated from its dynamics, our deliberately designed neural controller is able to reach the accurate tracking of reference trajectories in a noisy environment. Theoretical analysis and extensive simulations show that the proposed controller stabilizes the control system polluted by harmonic noises and converges the position tracking error to zero. Comparisons show that our proposed solution consistently and significantly outperforms the existing primal-dual neural solutions as well as feedforward neural one and adaptive neural one for redundancy resolution of manipulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.