Abstract

Quadratic programming with equality constraint (QPEC) problems have extensive applicability in many industries as a versatile nonlinear programming modeling tool. However, noise interference is inevitable when solving QPEC problems in complex environments, so research on noise interference suppression or elimination methods is of great interest. This article proposes a modified noise-immune fuzzy neural network (MNIFNN) model and use it to solve QPEC problems. Compared with the traditional gradient recurrent neural network (TGRNN) and traditional zeroing recurrent neural network (TZRNN) models, the MNIFNN model has the advantage of inherent noise tolerance ability and stronger robustness, which is achieved by combining proportional, integral, and differential elements. Furthermore, the design parameters of the MNIFNN model adopt two disparate fuzzy parameters generated by two fuzzy logic systems (FLSs) related to the residual and residual integral term, which can improve the adaptability of the MNIFNN model. Numerical simulations demonstrate the effectiveness of the MNIFNN model in noise tolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.