Abstract

Nanocrystalline cellulose (NCC) was used for improving the formaldehyde (HCHO) emission and bonding strength of urea formaldehyde (UF) resin adhesive in fiberboard and plywood. The original NCC was modified by 3-aminopropyltriethoxysilane (APTES) and the wetting property with UF resin adhesive was improved by 26.4%. The UF resin adhesive with modified NCC was characterized by X-ray powder diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared (FT-IR). The crystal region of UF resin adhesive was influenced by NCC and the diffraction intensity of the peak at 2θ = 22.82° was enhanced significantly. The thermal stability of UF resin adhesive with 1.0% modified NCC increased by 4.9%. And modified NCC led hydroxyl groups into the UF resin adhesive. HCHO emission and bonding strength of the UF resin adhesive with modified NCC were tested according to Chinese National Standards GB/T 17657-1999 and GB/T 9846-2004. The HCHO emission of fiberboard and plywood with 1.5% modified NCC decreased by 13.0% and 53.2%, respectively. The bonding strength of fiberboard increased by 158.3% (from 0.12 MPa of control group to 0.31 MPa of fiberboard with 1.5% modified NCC), while 1.5% modified NCC led to a 23.6% increase in the plywood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call