Abstract

Kalman filter based training algorithms for recurrent neural networks provide a clever alternative to the standard backpropagation in time. However, these algorithms do not take into account the optimization of the hidden state variables of the recurrent network. In addition, their formulation requires Jacobian evaluations over the entire network, adding to their computational complexity. We propose a spatial-temporal extended Kalman filter algorithm for training recurrent neural network weights and internal states. This new formulation also reduces the computational complexity of Jacobian evaluations drastically by decoupling the gradients of each layer. Monte Carlo comparisons with backpropagation through time point out the robust and fast convergence of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.