Abstract

Recurrent neural networks serve as black-box models for nonlinear dynamical systems identification and time series prediction. Training of recurrent networks typically minimizes the quadratic difference of the network output and an observed time series. This implicitely assumes that the dynamics of the underlying system is deterministic, which is not a realistic assumption in many cases. In contrast, state-space models allow for noise in both the internal state transitions and the mapping from internal states to observations. Here, we consider recurrent networks as nonlinear state space models and suggest a training algorithm based on Expectation-Maximization. A nonlinear transfer function for the hidden neurons leads to an intractable inference problem. We investigate the use of a Particle Smoother to approximate the E-step and simultaneously estimate the expectations required in the M-step. The method is demonstrated for a sythetic data set and a time series prediction task arising in radiation therapy where it is the goal to predict the motion of a lung tumor during respiration.KeywordsRecurrent neural networksDynamical System identificationEMParticle Smoother

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.