Abstract

Rapid developments in modern wireless communication permit the trade of spectrum scarcity. Higher data rate and wider bandwidth emerge the development in growing demand of wireless communication system. The innovative solution for the spectrum scarcity is cognitive radio (CR). Cognitive radio is the significant technology used to utilize the spectrum effectively. The important aspect of CR is sensing the spectrum band and detects the presence or absence of the primary user in the licensed band. Moreover, another serious issue in next generation (5G) wireless communication is to decide the less complex 5G waveform candidate for achieving higher data rate, low latency and better spectral efficiency. Universal filtered multi-carrier (UFMC) is one of the noticeable waveform candidates for 5G and its applications. In this article, we investigate the spectrum sensing methods in multi-carrier transmission for cognitive radio network applications. Especially, we integrate the sensing algorithm into UFMC transceiver to analyze the spectral efficiency, higher data rates and system complexity. Through the simulation results, we prove that the UFMC based cognitive radio applications outperform the existing Orthogonal Frequency Division Multiplexing (OFDM) based CR applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.