Abstract

Fifth Generation (5G) communication systems applications are expected to use or require lower latency, higher data rates, and efficient spectrum usage which are impacted by the adopted modulation scheme. Thus, proper selection and usage of efficient modulation scheme is crucial. Orthogonal Frequency Division Multiplexing (OFDM) suffers from high peak to average power ratio, which results in low efficiency of power amplifier and increases the battery consumption. Moreover, the OFDM spectrum has high out of band side lobes or side lobe leakage causing problem of low spectral efficiency. So, to overcome some of these drawbacks new modulation techniques for 5G communication systems such as Generalized Frequency Division Multiplexing (GFDM), filtered – OFDM (f-OFDM), Universal Filtered Multi-Carrier (UFMC), Filter Bank Multi-Carrier (FBMC) are considered. In this paper, we perform the comparative study of UFMC and FBMC in terms of Spectral Efficiency (SE) and Power Spectral Density (PSD). Simulations were done to evaluate the performance variation that can be achieved by varying the parameters of these modulation techniques, such as filter length, burst duration and overlapping factor. Our simulation results show that, FBMC has better SE for large burst durations whereas UFMC is better for small burst durations. In terms of PSD, FBMC has lower side lobe than UFMC. This implies that FBMC is more preferable to minimize the inter symbol interference and inter carrier interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.