Abstract

The aim of the present study was to investigate whether modified Huangqi Chifeng decoction (MHCD) could be an effective treatment against Doxorubicin-induced nephrosis in rats and whether it regulates autophagy via the phosphoinositide-3 kinase/mammalian target of rapamycin (PI3K/mTOR) signaling pathway. A total of 40 male Sprague-Dawley rats were randomly divided into blank, model, telmisartan and MHCD groups. The rat model of nephrosis was induced by intragastric administration of Doxorubicin for 8 weeks. Rats were housed in metabolic cages and urine was collected once every 2 weeks to measure 24-h protein levels. Blood samples were obtained from the abdominal aorta and levels of albumin (ALB), total cholesterol (TCH), triacylglyceride (TG) and serum creatinine (Scr) were assessed. Renal pathological changes were examined using hematoxylin-eosin, Masson's trichome and periodic acid-Schiff staining. Podocytes and autophagosomes were observed using an electron microscope. The expression and distribution of microtubule-associated proteins 1A/1B light chain 3B (LC3), LC3-I, LC3-II, beclin-1, PI3K and mTOR were determined using immunohistochemistry and western blotting. At weeks 6 and 8, 24-h proteinuria significantly decreased in the MHCD group compared with the model group (P<0.05). Compared with the model group, the MHCD group exhibited significantly reduced levels of TG, TCH and Scr, as well as significantly increased ALB levels (P<0.05). MHCD was demonstrated to prevent glomerular and podocyte injury. The number of autophagosomes was significantly decreased and the expression of beclin-1, LC3, LC3-I and LC3-II was inhibited following MHCD treatment compared with the model group (P<0.05). MHCD treatment significantly increased the expression of PI3K and mTOR in Doxorubicin nephrotic rats compared with the model group (P<0.05). In conclusion, MHCD was demonstrated to ameliorate proteinuria and protect against glomerular and podocyte injury by inhibiting excessive autophagy via the PI3K/mTOR signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.