Abstract
Solar steam generation (SSG) as a pollution-free and sustainable way for desalination or wastewater treatment has attracted great attention in recent years. Herein, we report the fabrication of novel aerogels GAHAS and GAHAF composed of 3-aminopropyltriethoxysilane (KH550)-modified hollow glass microspheres (HGM) and reduced graphene oxide (RGO) by a sol-gel method for highly efficient SSG. The RGO can well wrap on modified HGM and form an interpenetrated porous structure with an excellent mechanical property. In addition, benefiting from the hollow structure of HGM, GAHAS obtained by supercritical CO2 drying well maintains the original structure of the hydrogel and shows low thermal conductivity (0.0823 W m-1 K-1) in the wet state and self-floating ability. Combined with its superhydrophilic wettability and high light absorption (ca. 93%), the as-prepared GAHAS shows an outstanding photothermal conversion efficiency of 89.13% under 1 sun (1 kW m-2) illumination and excellent stability. Moreover, from the simulated seawater outdoor solar desalination experiment, it was found that the concentrations of the four primary ions K+, Ca2+, Na+, and Mg2+ in purified water are 1.65, 0.09, 1.42, and 0.32 mg L-1, respectively, and fully meet drinking water standards. Thus, our GAHAS aerogel shows great potential for practical application in SSG. This work enriches the photothermal materials and may provide a new idea for design and creation of HGM-based photothermal materials with low thermal conductivity, tunable porosity, high mechanical strength, self-floating ability, and high solar energy conversion efficiency for SSG.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have