Abstract
In this paper, topology and shape optimization of truss or frame structures is discussed. The optimization starts from a structure, into which a finite number of nodesare set; all the nodes are connected together by trusses in all possible variants. Unfit variants of the truss system are rejected. Two alternative ways of the optimization are compared: topology optimization starting from initial structure with a larger number of nodes, and topology optimization starting from initial structure with smaller number of nodes but with additional shape optimization of the obtained topology. The topology optimization is solved with original modified genetic algorithm, giving better results in comparison with classical genetic algorithm. Instead of further development of constraint system, the additional step is introduced into algorithm – purification of genotype, which allows complementary improvement of particular population individuals, and together for the optimization process retains more possibilities than stiffening of constraints. The shape optimization is solved by classical genetic algorithm. Both strategies effectively improve the solution, however the common topology/shape optimization requires less computer resources. All numerical examples are obtained with original software developed by the authors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.