Abstract

Modified Friedmann equations have been recently derived by implementing the gravity-thermodynamics conjecture in Kaniadakis statistics, which is a relativistic self-consistent generalization of the classical Boltzmann–Gibbs theory. The ensuing cosmological scenario exhibits new extra corrections depending on the model parameter K. In this work we apply Kaniadakis statistics to the horizon entropy of the FRW Universe and explore implications on baryogenesis and primordial Lithium abundance problems. This framework is motivated by the fact that physics of the early Universe is fundamentally relativistic, suggesting that a relativistic description might also involve the statistical properties of horizon degrees of freedom. By requiring consistency with observational data on baryogenesis and Lithium abundance, we constrain the Kaniadakis parameter. We also speculate on the possibility that a running K be allowed to trace the usual thermal history of the Universe in Kaniadakis statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.