Abstract

A series of novel D-π-A type organic small molecules have been designed, synthesized, and demonstrated for non-volatile resistive switching WORM memory application. The electron-deficient phenazine and quinoxaline units were coupled with various functionalized triphenylamine end caps to explore the structure-property correlations. The photophysical investigations displayed considerable intramolecular charge transfer, and the electrochemical analysis revealed an optimum band gap of 2.44 to 2.83 eV. These factors and the thin film morphological studies suggest the feasibility of the compounds as better resistive memory devices. All the compounds indicated potent non-volatile resistive switching memory capabilities with ON/OFF ratios ranging from 103 to 104, and the lowest threshold voltage recorded stands at -0.74 V. A longer retention time of 103 s marks the substantial stability of the devices. The phenazine-based compounds outperformed the others in terms of memory performance. Exceptionally, the compound with -CHO substituted triphenylamine exhibited ternary memory performance owing to its multiple traps. The resistive switching mechanism for the devices was validated using density functional theory calculations, which revealed that the integrated effect of charge transfer and charge trapping contributes significantly to the resistive switching phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.