Abstract
Within the framework of generalized factorization of higher-twist contributions, including modification to splitting functions of both quark and gluon, we get and numerically resolve the medium-modified DGLAP (mDGLAP) evolution equations. With Woods-Saxon nuclear geometry and Hirano 3D ideal hydrodynamic simulations of hot medium, we study the medium modified fragmentation functions (mFF) in DIS and Au+Au collisions in RHIC. Our calculations imply that the parton density in the hot medium produced in RHIC is about 30 times larger than in a cold nucleus.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have