Abstract

Rice is easy to accumulate mercury (Hg), especially methylmercury (MeHg) with high toxicity, and this leads to a serious health risk for residents in some Hg-polluted areas of Asia. Thus, there is an urgent need to find soil remediation techniques that can both guarantee agricultural production and protect human health in these Hg-contaminated areas. In this study, montmorillonite (Mont) and medical stone (Med) were modified by a thiol-based material (-SH) and by chitosan to obtain modified clay mineral adsorbents. Pot experiments were then performed to explore their ability to reduce the levels of Hg and MeHg in rice and their reduction mechanisms. Compared with unmodified clay minerals, modified clay minerals had better Hg reduction efficiencies in rice. The amendment of SH-modified Med (Med-SH) had the highest THg and MeHg reduction efficiencies in rice, reaching up to 78% and 81%, respectively, and brought the THg concentration in the rice below China's health guidelines for rice (20 ng g−1). Not only did amendment of the SH-modified clay minerals reduce the exchangeable and specially adsorbed Hg in the soil, as did the other amendments, but they also significantly reduced the amount of oxide-bound Hg and MeHg in the soil, and greatly enhanced the retention of Hg and MeHg in soil, thus significantly reduced the concentration of Hg and MeHg in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call