Abstract
Graft copolymerization of mixtures of acrylic acid (AA) and acrylamide (AAm) onto chitosan was carried out by using potassium persulfate (KPS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. The effect of reaction variables, such as MBA concentration and AA/AAm ratio on the water absorbency capacity have been investigated. The polymer structures were confirmed by FTIR spectroscopy. Water absorbencies were compared for the hydrogels before and after alkaline hydrolysis. In the non-hydrolyzed hydrogel, enhanced water absorbency was obtained with increasing AA in monomer feed. However, after saponification, the sample with high AAm ratio exhibited more water absorbency. These behaviors were discussed according to structural parameters. The swelling kinetics of the superabsorbing hydrogels was studied as well. The hydrogels exhibited ampholytic and reversible pH-responsiveness characteristics. The swelling variations were explained according to swelling theory based on the hydrogel chemical structure. The hydrogels exhibited salt-sensitivity and cation exchange properties. The pH-reversibility and on–off switching properties of the hydrogels make the intelligent polymers as good candidates for considering as potential carriers for bioactive agents, e.g. drugs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have