Abstract

A Turbine Inlet Air Conditioning (TIAC) system can chill the inlet air of the turbine to maintain maximum turbine performance at all ambient temperatures. However, turbine characteristics, performance guarantees and bell-mouth icing considerations require accurate prediction of the chilling coil performance over a wide range of operating conditions. A modified wet-surface model (MWSM) is developed to more accurately predict the chilling coil performance. The higher accuracy of the model is demonstrated by applying the model to simulate performance data of two different coils. The data covered a wide range of operating conditions with ambient temperature vary from [Formula: see text]C to [Formula: see text]C dry bulb and [Formula: see text]C to [Formula: see text]C wet bulb. The turbine flow rate varies from 100% to 43% with chilled air temperature in the range of 3.3–[Formula: see text]C and chilling load variation of 100% to 5%. The chilled water flow rate varies from 100% to 32% with supply glycol-water temperature in the range of [Formula: see text]2.2–[Formula: see text]C. The MWSM uses 11 empirical parameters evaluated from the coil performance data and is able to correlate the data with an adjusted coefficient of determination ([Formula: see text]) of over 99%. The higher accuracy of the modified model enables the development of a more robust controls strategy required to maintain the inlet air temperature at the set point with varying ambient temperatures and chilling load conditions. The model can also be applied to other chilling and dehumidification applications especially those experiencing wide variations in operating conditions and load or those requiring close control of the chilling and dehumidification process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.