Abstract

A modified angular spectrum algorithm is presented for the diffraction calculation of partially coherent beams propagating in optical systems. The proposed algorithm can directly calculate the cross-spectral density of partially coherent beams at each surface of the optical system and possesses much higher computational efficiency for low coherent beams compared with that of the common modal expansion methods. Then, a Gaussian-Schell model beam propagating in a double-lens array homogenizer system is introduced to carry out a numerical simulation. Results show that the proposed algorithm can obtain an identical intensity distribution as the selected modal expansion method but with a much higher speed, thus verifying its accuracy and high efficiency. However, it's worth noting that the proposed algorithm is only suitable to the optical systems in which the partially coherent beams and optical components have no coupling effects in the x and y directions and can be dealt with individually.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.