Abstract

Neuro-fuzzy systems have produced high accuracy in modeling numerous real-world applications. However, the in-built computational complexity and curse of dimensionality often cease opportunities of implementations in applications with large input size. This is also true with adaptive neuro-fuzzy inference system (ANFIS) as mostly the applications in literature are with small input size. The five-layer architecture of ANFIS is modified in this paper to reduce computational cost. For effective parameters training, the popular swarm-based metaheuristic algorithm Artificial Bee Colony (ABC) algorithm is employed after modification for enhanced convergence ability. The proposed ABC variant eliminates scout bees, hence called ABC-Scoutless, outperforms standard ABC and particle swarm optimization (PSO) on benchmark test functions. The modified ANFIS trained by ABC-Scoutless performs equally better as standard ANFIS on benchmark classification problems with different input range, but with less computational cost due to reduced number of trainable parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.