Abstract

Improvements to ArduSub for the BlueROV2 (BROV2) Heavy, necessary for accurate simulation and autonomous controller design, were implemented and validated in this work. The simulation model was made more accurate with new data obtained from real-world testing and values from the literature. The manual control algorithm in the BROV2 firmware was replaced with one compatible with automatic control. In a Robot Operating System (ROS), a proportional–derivative (PD) controller to assist augmented reality (AR) pilots in controlling angular degrees of freedom (DOF) of the vehicle was implemented. Open-loop testing determined the yaw hydrodynamic model of the vehicle. A general mathematical method to determine PD gains as a function of the desired closed-loop performance was outlined. Testing was carried out in the updated simulation environment. Step response testing found that a modified derivative gain was necessary. Comparable real-world results were obtained using settings determined in the simulation environment. Frequency response testing of the modified yaw control law discovered that the bandwidth of the nonlinear system had a one-to-one correspondence with the desired closed-loop natural frequency of a simplified linear approximation. The control law was generalized for angular DOF and linear DOF were operated with open-loop control. A full six-DOF simulated dive demonstrated excellent tracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.