Abstract
This study evaluated the potential of high photosynthetic photon flux (PPF) from high-pressure sodium (HPS) lamps, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce growth, with or without N supplementation. Varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown Black-Seeded Simpson' lettuce (Lactuca sativa L.) seedlings. Cumulative leaf dry weight declined with increasing exposure, up to 20 hours per day, to 660 micromoles m-2 s-1 of photosynthetically active radiation (PAR) from HPS lamps concomitant with constant 20 hours per day of 400 micromoles m-2 s-1 from MH + QI lamps. Leaves progressively yellowed with increasing exposure to radiation from the three-lamp combination, corresponding to lower specific chlorophyll content but not to specific carotenoid content. Lettuce grown under 20-hour photoperiods of 400, 473, or 668 micromoles m-2 s-1 from HPS radiation alone had the highest leaf dry weight at a PPF of 473 micromoles m-2 s-1. Chlorophyll, but not carotenoid specific content, decreased with each incremental increase in PPF from HPS lamps. Doubling the level of N in nutrient solution and supplying it as a combination of NH4+ and NO3- partially ameliorated adverse effects of high PPF on growth and pigment content relative to treatments using single-strength N as NO3-.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have