Abstract

Indole constitutes a major component of the side chain of the amino acid tryptophan. Application of indole slows activation of voltage-dependent potassium channels and reduces steady-state conductance in a voltage- and concentration-dependent manner. The steep concentration dependence indicates that multiple indole molecules may interact with the channel. Indole does not noticeably change the unitary conductance or the mean open duration, however, it accelerates off-gating currents without altering on-gating currents. These properties of the modification of channel gating induced by indole are consistent with a model in which indole binds independently to every subunit of the channel complex to prevent the final concerted transition to the open state. We suggest that exogenously applied indole and side-chains of the tryptophan residues of the channel protein involved in activation may compete for the same effector position and that indole might be useful as a probe to study functional roles of tryptophan residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.