Abstract

1. An investigation has been made of low-temperature crystallization from organic solvents as a means of effecting practical separations of the solid and liquid acids of unhydrogenated and hydrogenated cottonseed oils. 2. At any fixed temperature the most efficient separations were obtained in the highly polar solvents, acetone and methyl acetate. However, it was possible in any case to make nonpolar petroleum naphtha (Skellysolve B) fully equivalent to the polar solvents simply by conducting the crystallization at a temperature approximately 10° F. lower than that employed with the polar solvents. Ethyl acetate and methyl ethyl ketone were intermediate between petroleum naphtha and acetone or methyl acetate in their effectiveness. 3. By employing a solvent-fatty acid ratio of 4 to 1 by weight and conducting crystallizations at 5° F. or lower from acetone and −5° F. or lower from petroleum naphtha, the liquid fatty acids from unhydrogenated cottonseed oil could be reduced to below −2° C. in titer and to below about 3 per cent in saturated acid content. Under these conditions there was no appreciable crystallization of oleic acid. 4. At a solvent-fatty acid ratio of 6 to 1 and the same temperatures (5° F. for acetone and − 5° F. for petroleum naphtha) equally good separations could be made of the saturated fatty acids present in the mixed acids from hydrogenated cottonseed oil (I.V.=70). Separation of “iso-oleic” acids from the fatty acids of the hydrogenated oil took place over a wide range of temperatures, beginning at 35° F. in acetone and at 25° F. in petroleum naptha, and being incomplete (according to Twitchell analyses of the liquid acids) in either solvent at −15° F. However, the bulk of the higher melting iso-oleic acids was precipitated as the temperature approached −5° F. in acetone and −15° F. in petroleum naphtha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.