Abstract
We observed a modification of transition pathways in polarized resonance Raman spectroscopy during tip-enhanced Raman spectroscopy (TERS) analysis of metallic carbon nanotubes (CNTs). At a spatial resolution reaching up to the sub-nanometer regime, the signal intensity of the typical D-band is observed to be even higher than the intensity of the G-band all over the probed CNTs in TERS imaging. The measured D-band is attributed to the non-vertical transitions of electrons in k-space that are facilitated by highly confined near-field light at the tip–sample junction of our scanning tunneling microscope based TERS system. The D-band signal was observed even when the CNTs were excited by light polarized perpendicular to the tube axis that corresponds to electronic excitations between different cutting line numbers of a CNT. By combining the electron pathways brought about by both the near-field light and its polarization, we found a unique optical transition of electrons of CNTs in near-field Raman spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.