Abstract

Polarization analysis in tip-enhanced Raman spectroscopy (TERS) is of tremendous advantage, as it allows one to study highly directional intrinsic properties of a sample at the nanoscale. However, neither evaluation nor control of the polarization properties of near-field light in TERS is as straightforward as in usual far-field illumination, because of the random metallic nanostructure attached to the tip apex. In this study, we have developed a method to successfully analyze the polarization of near-field light in TERS from the scattering pattern produced by the induced dipole in the metallic tip. Under dipole approximation, we measured the image of the dipole at a plane away from the focal plane, where the information about the direction of the dipole oscillation was intact. The direction of the dipole oscillation was determined from the defocused pattern, and then the polarization of near-field light was evaluated from the oscillation direction by calculating the intensity distribution of near-field light through Green's function. After evaluating the polarization of some fabricated tips, we used those tips to measure TERS images from single-walled carbon nanotubes and confirmed that the contrast of the TERS image depended on the oscillation direction of the dipole, which were also found in excellent agreement with the calculated TERS images, verifying that the polarization of the near-field was quantitatively estimated by our technique. Our technique would lead to better quantitative analysis in TERS imaging with consideration of polarization impact, giving a better understanding of the behavior of nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.