Abstract

The steadily increasing amount of digital information necessitates the availability of reliable high capacity magnetic data storage. Here, future hard disk drives with extended areal storage densities beyond 1.0 Tb/in2 are envisioned by using high anisotropy granular and chemically L10-ordered FePt (002) perpendicular media within a heat-assisted magnetic recording scheme. Perpendicular texturing of the [001] easy axes of the individual grains can be achieved by using MgO seed layers. It is therefore investigated, if and how an Ar+ ion irradiation of the MgO seed layer prior to the deposition of the magnetic material influences the MgO surface properties and hereby the FePt [001] texture. Structural investigations reveal a flattening of the seed layer surface accompanied by a change in the morphology of the FePt grains. Moreover, the fraction of small second layer particles and the degree of coalescence of the primarily deposited FePt grains strongly increases. As for the magnetic performance, this results in a reduced coercivity along the magnetic easy axis (out of plane) and in enhanced hard axis (in-plane) remanence values. The irradiation induced changes in the magnetic properties of the granular FePt-C films are traced back to the accordingly modified atomic structure of the FePt-MgO interface region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call