Abstract
Ultraviolet photoelectron spectroscopy has been applied to the investigation of modified hole injection barriers in organic light-emitting devices (OLEDs). Different from those reported previously, the indium tin oxide (ITO) surface treated in situ by oxygen plasma possesses a work function of 5.2 eV, and the organic ITO interface thereafter formed shows a 0.5 eV smaller hole injection barrier compared to that on untreated ITO. Insertion of an ultrathin SiO2 layer between the organic and ITO results in a similar reduction of the barrier. This indicates that improved hole injection favors efficient operation of OLEDs, as manifested by enhanced efficiency by the SiO2 insertion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have