Abstract
Possible changes in the fatty acid composition of dietary fats and oils which might occur during digestion, absorption and formation of chylomicrons and chylomicron remnants were investigated. Chylomicrons were collected from the thoracic duct of rats tube-fed with olive, maize, palm or fish oil or butter fat, and their fatty acid composition was determined and compared with that of their parent lipids. In turn, these lipoproteins were converted to chylomicron remnants in functionally hepatectomized rats and their composition re-determined. The predominant fatty acids in each of the oils and fats also predominated in their respective chylomicrons, but their proportions were reduced during the processes leading to their formation. Endogenous contributions of linoleic, eicosapentaenoic, and docosahexaenoic acids were particularly noted when these fatty acids were not well-represented in the original oils and fats, suggesting that they may be obligatory constituents in the formation of chylomicrons. The conversion of chylomicrons to remnants further attenuated the extremes in fatty acid composition of the dietary oils and fats. These results indicate that following an acute intake of oil or fat, the resulting chylomicrons and chylomicron remnants presented to the tissues contain a more balanced distribution of saturated, mono- and polyunsaturated fatty acids than the oils and fats from which they were derived.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have