Abstract

Effects of varying the intracellular adenosine triphosphate level on both the action potential and the membrane current were studied in single ventricular cells isolated from the guinea pig heart, using collagenase. Intracellular injection of adenosine triphosphate elevated the plateau potential level and prolonged the action potential duration. Similar results were obtained by injecting adenosine diphosphate, adenosine monophosphate, or creatine phosphate, i.e., substances considered to increase the intracellular concentration of adenosine triphosphate. In contrast, the action potential was depressed by procedures which could reduce the intracellular adenosine triphosphate level, such as an injection of creatine, superfusion of glucose-free Tyrode's solution containing 5.4 mM cyanide ion, or an injection of adenosine monophosphate into the cyanide-superfused cell. When the membrane current was recorded under the voltage clamp, it was found that the injection of adenosine triphosphate increased the amplitude of the slow inward current, whereas the superfusion of cyanide ion did not significantly decrease the slow inward current, although the action potential became considerably shorter. It was also found that the adenosine monophosphate injection decreased the amplitude of the net outward membrane current at the plateau level and increased it at around -40 mV, and thus intensified the N-shape of the isochronal 0.3-second current-voltage curve. The cyanide ion superfusion produced the opposite effect; in response to depolarizing clamp pulses more positive to the plateau level, the membrane current increased significantly with cyanide ion, but increased only slightly with adenosine triphosphate. These results suggest that intracellular adenosine triphosphate modifies the membrane currents at the plateau potential range, thus altering the action potential duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.