Abstract
Coastal waters in the vicinity of the river delta regions of the world are characterized by significant concentrations of suspended sediments. To estimate the water sediment load from satellite observations, an important step is to accurately remove the optical effects of the intervening atmosphere. The NASA SeaDAS code [1] has been shown to accurately correct MODIS satellite data for atmospheric effects over most aquatic regimes, using near infrared (NIR) bands where water turbidity is low, and shortwave infrared (SWIR) bands where the NIR bands indicate high turbidity [2]. However, at very high sediment loads, of circa 500 g/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> and above - and this is not an unusually high level in delta regions - the SWIR bands can themselves be influenced by the suspended sediment and their utility for atmospheric correction thus compromised. Indeed, the ocean color NIR bands saturate under these conditions and so become unviable for any manner of atmospheric correction. We have employed the MODIS water vapor bands in the 900 nm region of the spectrum to provide a correction to the 1.24 µm band MODIS reflectance, thereby extending the utility of the SeaDAS SWIR atmospheric correction to very high sediment concentration waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.