Abstract

AbstractGold nanoparticles dispersed on high‐surface‐area carbon materials were investigated as heterogeneous catalysts for the selective oxidation of d‐glucose to d‐gluconic acid in aqueous solution with molecular oxygen. Salt‐templated porous carbon supports were obtained from different precursors with and without nitrogen and treated under air or hydrogen atmosphere to functionalize the surface with nitrogen, oxygen, or hydrogen. The influence of the surface atomic structure of the carbonaceous supports with similar pore structure on the size and catalytic properties of the metallic nanoparticles was studied at gold nanoparticle loadings of 0.4–0.7 wt %. The functionalisation significantly influences the surface polarity of the support materials and the strength of the interaction with the gold nanoparticles. The surface polarity influences the structure and properties of the catalysts because both the gold deposition and the glucose oxidation reaction take place in the aqueous phase. Rather hydrophilic supports are obtained by doping with oxygen and nitrogen and lead to large gold nanoparticles with low catalytic activity. In contrast, the rather hydrophobic as‐made and hydrogen‐treated supports provide higher catalytic activity (metal time yield up to 1.5 molGlucose molAu−1 s−1) resulting from their smaller gold particles of 3–5 nm in diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.