Abstract

Ternary nanocomposites, composed of polyoxymethylene (POM), ethylene octene copolymer and zinc oxide (ZnO), are prepared by melt compounding. The effects of two types of ethylene‐octene copolymers, differing with α‐octene content (38% for EOC38 and 17% for EOC17), as well as nanostructured ZnO on thermal behavior of POM are investigated. The content of EOC in the POM based composites is varied between 10 and 50 wt%, while the content of ZnO is 2 wt%. Thermal behavior of POM based systems are studied by using differential scanning calorimetry and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. Results of thermogravimetric analysis show that, by rising either the elastomer or ZnO content, thermal stability of the investigated POM composites can be increased. The modifying effect of EOC17 in respect of thermal resistance is somewhat greater than that of EOC38. Simultaneous addition of EOC and ZnO to POM is synergistic with respect to thermal stability of the composite material. POLYM. ENG. SCI., 57:772–778, 2017. © 2017 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.