Abstract

AbstractIn this study, chromium‐based metal–organic framework (MIL‐101(Cr)) was incorporated into polyvinyl alcohol nanofibers (PVA NFs) via green electrospinning followed by heat treatment to fabricate MIL‐101(Cr)@PVA NFs composite without the need for any organic solvent or other dispersants. The fabricated MIL‐101(Cr)@PVA NFs were comprehensively characterized using a suite of common techniques. Morphological characteristics of MIL‐101(Cr)@PVA NFs showed a fibrous structure with an average diameter of 228 ± 37 nm and decorated with MIL‐101(Cr) particles arranged in a nanoneedle‐like pattern. Subsequently, its adsorption efficiency towards the cationic crystal violet dye (CV) was evaluated through batch adsorption experiments. The influence of various experimental parameters on CV removal efficiency was systematically optimized using a factorial design approach. The Langmuir isotherm and kinetic pseudo‐second‐order (PSO) model provided an excellent fit to the adsorption equilibrium data, indicating a maximum adsorption capacity (qmax) of 344.18 mg/g for MIL‐101(Cr)@PVA NFs compared with 83.94 mg/g for pristine PVA NFs. Furthermore, the MIL‐101(Cr)@PVA NFs composite demonstrated excellent reusability and stability, maintaining a significant portion of its removal capacity even after six adsorption–desorption cycles. These findings highlight the potential of the fabricated composite as a highly efficient and reusable adsorbent for CV removal from wastewater treatment applications.Highlights The MIL‐101(Cr)@PVA NFs nanocomposite fabricated by electrospinning technique. The MIL‐101(Cr) particle arranged in a nanoneedle‐like pattern in the PVA NFs. Incorporation of MIL‐101(Cr) improved qmax of PVA by 391.5%. The MIL‐101(Cr)@PVA NFs membrane has excellent stability and reusability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.