Abstract

In this study, the effects of solvent and magnesium chloride hexahydrate (MgCl2⋅6H2O) on the polymorphism of polyvinylidene fluoride (PVDF) thin films were systematically investigated. Wherein, N,N-dimethylformamide (DMF) and water with different volume ratio were used as mixed solvents to obtain the solution casting films, P series. In addition, MgCl2⋅6H2O was comparatively added to prepare PVDF/MgCl2⋅6H2O hybrid films, P-M series. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimeter (DSC) were utilized to study the influence of the water content in the mixed solvents and the hydrated salt on crystallization behavior of PVDF. Further, the morphologic images from scanning electronic microscopy (SEM) and polarized optical microscopy (POM), as well as the pizoelectirc d33 test also supplies the corresponding evidences. As indicated, the water in the mixed solvent shows different effect on main crystal forms of PVDF. At low water content, the solvents may favor the polar phase (β- and γ-phase) mainly by hydrogen bonds interactions between PVDF and water, together with dipolar interactions between PVDF and DMF. At high water content, the nonsolvent water will impose confinement effect on polymer chain diffusion and crystal growth which facilitate the formation of α-phase PVDF. Moreover, magnesium chloride hexahydrate mainly functioned as the nucleation sites for PVDF crystallization. The result of small-angle X-ray scattering (SAXS) implies the content of water or MgCl2⋅6H2O has little impact on the structure of the long period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.