Abstract

Bacterial adhesion onto hospital material surfaces still represents a big healthcare issue, being preventive measures required to mitigate this problem, such as increasing material surface hydrophilicity. In the present study, gum Arabic, a hydrophilic polysaccharide, was used to modify the surface of polyethylene terephthalate (PET). Initial water contact angle (WCA) and WCA after several washing cycles were studied as response variables by a 24 full factorial design. Several reaction parameters, such as contact time between gum Arabic and PET, gum Arabic concentration, curing temperature and curing time for PET modification were investigated. The most significant parameters were found to be the curing temperature and curing time. The optimized parameters led to a WCA reduction from 70° to 27°. The modified PET samples were characterized using several techniques including AFM, colorimetric, ATR-FTIR and contact angle which further confirmed a successful surface modification. Furthermore, bacterial adhesion assays have clearly shown that the treated PET material was highly effective in preventing the bacterial adhesion of Escherichia coli expressing YadA, an adhesive protein from Yersinia so-called Yersinia adhesin. The use of design of experiments techniques allowed for successfully attaining a PET material with a high bacterial anti-adhesiveness, using a simple grafting approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call