Abstract
Wetting behavior of Zinc Oxide (ZnO) based nanomaterials has been the subject of intense investigations and is an active research field for various engineering applications and modifying the surface wettability of ZnO is of great interest. In this study, one-dimensional (1 D) semiconducting ZnO nanorods are grown on a superhydrophobic polyethylene terephthalate (PET) fabric using a hydrothermal method. A facile polydimethylsiloxane (PDMS) coating is applied onto the ZnO grown PET fabrics to improve the hydrophobicity. A wide range of characterization techniques such as field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-vis spectroscopy and contact angle measurement are used to explore the morphology and wetting behavior of the as-prepared samples. The measured water contact angle (WCA) is >150° indicating its superhydrophobicity. This study reports an efficient way to obtain highly hydrophobic semiconducting ZnO grown on PET fabric, which can be of great interest for many future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.