Abstract
A titania film was deposited on Parylene-coated glass by a one-step, ultrasound-assisted procedure. The TiO 2 nanoparticles formed during the sonochemical hydrolysis of Ti(i-OPr) 4 were thrown to the surface and strongly attached to the Parylene substrate. By using different solvents (water, ethanol or their mixture) and reagent concentrations, the thickness, uniformity and crystallinity of the deposited layer were regulated. PVP was used to stabilize the highly homogeneous distribution of TiO 2 nanocrystals on the Parylene surface. The morphology and structure of the coated films were characterized by physical and chemical methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS), and optical spectroscopy. The photocatalytic activity of the titania-modified Parylene film in the photo discoloration of methylene blue was demonstrated. The experimental results revealed a correlation between the uniformity of the nanostructured anatase titania film and its photocatalytic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.