Abstract

Siliceous MCM-41 samples were modified by silylation using trimethylchlorosilane (TMCS). The surface coverage of functional groups was studied systematically in this work. The role of surface silanol groups during modification was evaluated using techniques of FTIR and 29Si CP/MAS NMR. Adsorption of water and benzene on samples of various hydrophobicities was measured and compared. It was found that the maximum degree of surface attachments of trimethylsilyl (TMS) groups was about 85%, corresponding to the density of TMS groups of 1.9 per nm2. The degree of silylation is found to linearly increase with increasing pre-outgassing temperature prior to silylation. A few types of silanol groups exist on MCM-41 surfaces, among which both free and geminal ones are responsible for active silylation. Results of water adsorption show that aluminosilicate MCM-41 materials are more or less hydrophilic, giving a type IV isotherm, similar to that of nitrogen adsorption, whereas siliceous MCM-41 are hydrophobic, exhibiting a type V adsorption isotherm. The fully silylated Si−MCM-41 samples are more hydrophobic, giving a type III adsorption isotherm. Benzene adsorption on all MCM-41 samples shows type IV isotherms regardless of the surface chemistry. Capillary condensation occurs at a higher relative pressure for the silylated MCM-41 than that for the unsilylated sample, though the pore diameter was found reduced markedly by silylation. This is thought attributed to the diffusion constriction posed by the attached TMS groups. The results show that the surface chemistry plays an important role in water adsorption, whereas benzene adsorption is predominantly determined by the pore geometry of MCM-41.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call