Abstract

The modification of heat transfer in molten silicon during Czochralski (CZ) crystal growth is discussed by focusing on the transition of the flow mode from axisymmetric to nonaxisymmetric, in order to clarify the mechanism of crystal-melt interface shape deformation. Heat transfer in silicon melt is observed by measuring the difference in temperature near the crucible wall and at the crystal-melt interface with simultaneous observation of molten silicon flow. We confirm that the heat transfer coefficient of silicon melt is reduced when the flow mode is changed from axisymmetric to non-axisymmetric. The crystal-melt interface shape changed as a result of the modified heat transfer, which is due to the flow mode transition from axisymmetric to non-axisymmetric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call