Abstract

Halloysite nanotubes (HNTs) clay were modified with alkyl halides, bromoethane (BrE), bromodecane (BrD), and bromooctadecane (BrOD), respectively. The FT-IR spectra of modified HNTs demonstrated an increase in the intensity of aliphatic –CH2 peaks at 2920 and 2850 cm−1 proportional to the number of C atoms in the modifying agent confirming the success of chemical modification with corresponding alkyl halides. Surface charge of NaOH treated HNTs, −65.7 ± 5.1 mV was increased to −37.1 ± 2.4, −40.6 ± 5.3, and −44.7 ± 1.9 mV, respectively upon chemical modification with BrE, BrD, and BrOD. The Surface area of the HNT clays, 43.2 ± 1.3 m2/g was also increased to 59.8 ± 2.7, 56.9 ± 2.1, and 47.9 ± 1.7 m2/g for BrE, BrD, and BrOD modified HNT clays, respectively. Base-activated HNT clays at 1 mg/mL concentration found to be nonhemolytic with 3.5 ± 1.2% hemolysis ratio, whereas HNT-BrOD clays were slightly exceeded hemolytic safety level with 6.6 ± 0.2% hemolysis induction. Base-activated HNT and HNT-BrOD clays were found to show antithrombogenic character with more than 100% blood clotting indexes,107.6 ± 1.8, and 106.5 ± 1.9%, respectively. Cytotoxicity studies of HNTs on L929 fibroblast cells revealed that HNTs in 12.5–200 μg/mL concentration range were shown dose-dependent cell viability, and above 50% cell viability was maintained at 200 μg/mL in all forms of HNT based clays administered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.