Abstract
The sustainable development of construction materials is an essential aspect of current worldwide trends. Reusing post-production waste in the building industry has numerous positive effects on the environment. Since concrete is one of the materials that people manufacture and use the most, it will continue to be an integral element of the surrounding reality. In this study, the relationship between the individual components and parameters of concrete and its compressive strength properties was assessed. In the experimental works, concrete mixes with different contents of sand, gravel, Portland cement CEM II/B-S 42.5 N, water, superplasticizer, air-entraining admixture, and fly ash from the thermal conversion of municipal sewage sludge (SSFA) were designed. According to legal requirements in the European Union, SSFA waste from the sewage sludge incineration process in a fluidized bed furnace should not be stored in landfills but processed in various ways. Unfortunately, its generated amounts are too large, so new management technologies should be sought. During the experimental work, the compressive strength of concrete samples of various classes, namely, C8/10, C12/15, C16/20, C20/25, C25/30, C30/37, and C35/45, were measured. The higher-class concrete samples that were used, the greater the compressive strength obtained, ranging from 13.7 to 55.2 MPa. A correlation analysis was carried out between the mechanical strength of waste-modified concretes and the composition of concrete mixes (the amount of sand and gravel, cement, and FA), as well as the water-to-cement ratio and the sand point. No negative effect of the addition of SSFA on the strength of concrete samples was demonstrated, which translates into economic and environmental benefits.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have