Abstract
The aim of the paper was to optimize the settings of the material properties of a computer model describing heat transfer in a wooden beam exposed to thermal loading from a porcelain radiation panel. The methodology was based on performing medium-scale fire tests as a basis for a creation of finite element model with 6 different setups of material characteristics based on the outputs of tests. When adjusting the settings, the T-history method was used to determine a beginning and end of a phase change of the water content in the wood, a thermal conductivity was adjusted based on a density and a moisture content, and enthalpy was used instead of a specific heat. The results of the simulations were compared with the real medium-scale fire tests, which showed the importance of adjusting the input data. Based on the T-history method, the setting with a thermal conductivity value of 0.35 W·m-1·K-1 at a temperature of 114.8 °C was shown to be the best, with a coefficient of determination 98.7%.The results of the simulations showed that there could be a correlation between the moisture content of the wood and the maximum value of the thermal conductivity of the wood in the phase change of water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have