Abstract

Samples of composite second-generation high-temperature superconducting (HTS) tapes based on the GdBCO (123) compound have been irradiated in a pulsed electron accelerator (system Terek-2, GPI RAS) through a tantalum target in order to determine how the thermal and shock loads arising on the tantalum-HTS interface affect the superconducting parameters of HTS tapes. Scanning Hall magnetometry was applied to characterize HTS samples subjected to electron irradiation. The thermal modes and shock load in a composite superconductor under irradiation are estimated as functions of the energy absorbed by the target. At a silver surface temperature equal to the melting point, the critical current decreases by 87% from the initial value. At lower irradiation energies, the decrease in the critical current is smaller. The role of the temperature effects and shock waves under this irradiation is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call