Abstract

Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1-5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1.

Highlights

  • Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts

  • The corresponding coding genes (MMAR_0187/MMAR_0188) lie adjacent to the gene pair pe35/ppe68_1 (MMAR_0185/MMAR_0186) and are paralogs of the pe35–ppe68 – esxB– esxA gene cluster located in the esx-1 locus (Fig. 1A)

  • Each mycobacterial T7SS secretes their own subset of Esx, proline– glutamic acid (PE), and proline–proline– glutamic acid (PPE) proteins, which share sequence similarities and show structural resemblance

Read more

Summary

Introduction

Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway Both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. We investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum. Mycobacteria belong to a subgroup of guaninecytosine rich Gram-positive bacteria that have acquired an extra hydrophobic layer of long-chain fatty acids, called mycolic acids. These specific lipids are covalently linked via an arabinogalactan layer to the peptidoglycan layer, forming a highly rigid and impermeable structure. In addition to their roles in nutrient and metabolite acquisition, ESX-3 and ESX-5 are involved in immune modulation of the host [9, 17, 18]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call