Abstract

In this paper, two methods consisting of triaxial water permeability and water penetration were used to evaluate the changes occurring in the pores of clay concretes during the tests. Triaxial permeability is generally used for concrete with higher permeability while concretes with very low permeability are suited for the penetration method.Clay concrete specimens of 0 to 40% clay content were used in the study. The concrete mixes had water-to-cement ratios (w/c) of 0.70, 0.75, 0.80, 0.85, and the cementitious content 380 and 450 kg/m3. Results show that concrete gains moisture during wetting at a much faster rate than loses it during subsequent drying. This could be explained by the contribution of suction pressure created upon drying. When water penetration pressure is applied, more water is driven into pore space that could be responsible for changing the network of the voids. Pore structure during drying may certainly be different in size and shape than its form during wetting, leading to a consequent effect on the permeability of the clay concretes. The modification could be one reason why the moisture gain percentage in clay concretes was higher than in normal concretes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call