Abstract
Communication networks in space systems involving the use of satellite constellations are DTN networks (Delay and Disruption Tolerant Networks). The establishment of communication channels in space communication networks has certain specifics: communication channels can be planned. In this regard, the CGR approach (Contact Graph Routing) is considered as the most promising solution to the problem of data routing. At the basis of this approach, taking into account this specificity, the calculation of the contact plan is considered. On the basis of this plan in the network nodes contact graphs are calculated, which are used to search the shortest data transmission routes. The paper proposes two interrelated solutions as a modification of this approach: the route search based on the contact plan, i.e. without calculation and use of the contact graph, and an adaptive method of finding the set of shortest routes required for routing. The essence of the first solution is as follows. In the standard CGR approach, the graph vertices correspond to the planned contacts between the network nodes, and the edges correspond to the data storage processes in the network nodes. In contrast, in the proposed approach, the vertices of the graph correspond to the nodes of the network, and the edges of the graph and their weight are determined dynamically, in the process of finding the shortest routes. The second solution is based on the concept of the planning front, which means a list of the closest contacts in time. The required routes are divided into a certain number of pools. Each pool combines the routes that use the specified contact from the planning front. The planning front is updated in two cases. If the network topology changes, the completed or not established contacts are replaced by subsequent ones with the same network nodes that are closest in time. If message traffic grows, a certain extension of the planning front and the use of additional route pools are performed. The article concludes with a description and justification of the expected advantages of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.