Abstract
AbstractUncertainty quantification (UQ) includes the characterization, integration, and propagation of uncertainties that result from stochastic variations and a lack of knowledge or data in the natural world. Monte Carlo (MC) method is a sampling‐based approach that has widely used for quantification and propagation of uncertainties. However, the standard MC method is often time‐consuming if the simulation‐based model is computationally intensive. This article gives an overview of modern MC methods to address the existing challenges of the standard MC in the context of UQ. Specifically, multilevel Monte Carlo (MLMC) extending the concept of control variates achieves a significant reduction of the computational cost by performing most evaluations with low accuracy and corresponding low cost, and relatively few evaluations at high accuracy and corresponding high cost. Multifidelity Monte Carlo (MFMC) accelerates the convergence of standard Monte Carlo by generalizing the control variates with different models having varying fidelities and varying computational costs. Multimodel Monte Carlo method (MMMC), having a different setting of MLMC and MFMC, aims to address the issue of UQ and propagation when data for characterizing probability distributions are limited. Multimodel inference combined with importance sampling is proposed for quantifying and efficiently propagating the uncertainties resulting from small data sets. All of these three modern MC methods achieve a significant improvement of computational efficiency for probabilistic UQ, particularly uncertainty propagation. An algorithm summary and the corresponding code implementation are provided for each of the modern MC methods. The extension and application of these methods are discussed in detail.This article is categorized under: Statistical and Graphical Methods of Data Analysis > Monte Carlo Methods Statistical and Graphical Methods of Data Analysis > Sampling
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.