Abstract

The landing of the aircraft has always been the most challenging and dangerous stage of the flight. In order to make a safe landing, the aircraft (A/C) requires reducing the vertical (at the stage of flare-out) and horizontal (prior to touchdown) components of the aircraft's flight speed vector, which in turn reduces the capabilities to increase lift and limits the crew's ability to perform maneuvers. At the same time, during landing the crew must align the aircraft with the runway (RW) and make a touchdown, subsequent A/C landing roll and stop within a rather limited area, which eventually and particularly, under the effect of contributing adverse factors (piloting errors, wind shear, icing, engine failure, aquaplaning, etc.) can cause the aircraft to overshoot and overrun the RW. Currently, as the analysis of aviation accidents statistics shows, the issue of preventing and alerting aircraft overrun is quite relevant. The search for a solution, in terms of preventing aircraft overrunning the runway (RW), is conducted as at the level of aviation authorities as among aircraft manufacturers, operators. Within the framework of this review, an attempt is made to identify and analyze the key factors affecting the dynamics of aircraft motion during landing, using information about aviation accidents that have occurred over the past few years. Notably, such aspects as a human factor and technical features of the operation of modern jet aircraft, influencing the A/C landing roll, are considered. In addition, special attention is paid to consider the methods of prevention and warning of A/C overrun with highlighting the approaches of passive and active protection. Within the framework of the analysis of active protection techniques, the principles of on-board avionic systems operation of the most major aircraft manufacturers, such as Boeing and Airbus, are considered. As an example of the passive protection, the experience of using special energy-absorbing destructible blocks installed next to the runway threshold, is analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call